Open-Domain Aspect-Opinion Co-Mining with Double-Layer Span Extraction

2022/11/29

Advisor : Jia-Ling, Koh

Speaker: Chi-Yu-Fan

Source: KDD 2022

Outline

Introduction(Task)

- Understanding customer requirements is crucial for business
- Review analysis to enhance their services
- **Aspect**: The **product** or **service** attribute
- **Opinion**: The reviewer's opinion towards the corresponding product or aspects(service) of a product
- **Span** : Each word we call span
- **Open-domain task**: lack training data, simultaneously mines find correspondence join in the model (can help it cross domain)

Introduction(Input)

Aspect term extraction(ATE)

$$A = \{A_1, A_2, .., A_i\}$$

" wine list"

 $R = \{w_1, w_2, ..., w_k\}$

the wine list is extensive and impressive

Opinion term extraction(OTE)

 $(O = \{O_1, O_2, ..., O_j\})$

"extensive" and "impressive"

Aspect-Opinion pair extraction(AOPE)

 $P = \{(A_i, O_j), ..\}$ ("wine list", "extensive") ("wine list", "impressive")

Introduction (Method)

- Supervised extraction methods of the review require large-scale **human-annotated label data**.
- Weak label: generates training data without human annotations by rules-based on universal dependency parsing
- Doubled layer
- Early stopping to avoid the model over-fitting to the noise to tackle the noisy weak supervision
- Self-train: Semi-supervised enrich label

Outline

Method
Open-Domain
ATE-OTE
AOPE
Loss
Early Stop
Self-training

Weak-label(open domain)

- Use the Parser tree.
- With out Human annotation train data
- This rule states that noun word (*N N*) is aspect term and adjective word (*J*) is an opinion term
- The rule can only label small portion of data(25.68% of data) but high precision of it

Model Description

- Encoder: Provide rich semantic, syntactic, and context-sensitive information for each token in the input review. (We use bert base encoder for our model)
- Framework: Build four independent encoders to tackle the tasks of AT E, OT E, OSAE, and ASOE

Encoder output

If the probability we label it 1 $\sigma(h_i * W^T + b)$ $\begin{cases} 1, & \text{if } h_{i_s} > 0; \\ 0, & else. \end{cases}$ $\hat{y}_i^s =$ Each \hat{y} W1 $\blacktriangleright S(x) = rac{1}{1+e^{-x}}$ $z = \sum_{i=1}^n (x_i w_i)$ word $\hat{y}_i^e = \begin{cases} 1, & \text{if } h_{i_e} > 0; \\ 0, & else. \end{cases}$ 表示法 Output Activation Sum Function Weights $y_i = h_i * \mathcal{W}^T + b.$ $h_{i_s} = y_i[0],$ Inputs $h_{i_e} = y_i[1],$ $H = \{h_{[CLS]}, h_1, h_2, ..., h_{[SEP]}\}$

15

The prediction from the start span and end span

ATE-OTE

the wine list is extensive and impressive

Aspect-Opinion Pair Extraction

Aspect-Opinion Pair Extraction

• The loss function is also the averaged binary cross-entropy loss (BCE) between the predicted spans and labeled spans.

Loss function

$$\mathcal{L} = \mathcal{L}_{ATE} + \mathcal{L}_{OTE} + \mathcal{L}_{ASOE} + \mathcal{L}_{OSAE}.$$
 (5)

• Sum of loss from *ATE*, *OTE*, *ASOE*, and *OSAE* modules

Canonical correlation analysis:

The hidden representations of the reviews to measure this **correlation** and use *CCA* as **early stopping** criteria during training

Canonical correlation analysis

 $Canonical \ Correlation \\ C_O = C_{OO}^{-1} C_{OA} C_{AO} C_{AA}^{-1}$

Early Stopping:

$$(u', v') = \operatorname{argmax} \operatorname{corr}(u^{\mathsf{T}}H_{ATE}, v^{\mathsf{T}}H_{OSAE}),$$

$$\rho_{1} = \operatorname{corr}(u^{\mathsf{T}}H_{ATE}, v^{\mathsf{T}}H_{OSAE})$$

$$\rho_{1} = \frac{u^{\mathsf{T}}\sum_{AO} v}{\sqrt{(u^{\mathsf{T}}\sum_{AA} u)(v^{\mathsf{T}}\sum_{OO} v)}}.$$

$$\rho = \frac{\sum_{M} (\rho_{1} + \rho_{2})}{M},$$
the number of reviews

Early stopping can prevent the model from over-fitting to the label noise.

Early Stoppingho1

Early Stoppingho2

Use the following observations to solve this problem

$$\gamma_{R} = A'_{ATE} \Delta A'_{OSAE} + O'_{OTE} \Delta O'_{ASOE},$$
$$A\Delta B = (A - B) \bigcup (B - A)$$

- Correctly predicted reviews
- Is added in D' *labeled* to enrich the training data

Outline

Datasets:SemEval14~16

Datasets	$S_{14}l$		$\mathbb{S}_{14}r$		$S_{15}r$		\$16r	
	Train	Test	Train	Test	Train	Test	Train	Test
#sentences	3045	800	3041	800	1315	685	2000	676
#aspects	2359	653	3693	1134	1205	542	1757	622
#opinions	2500	677	3512	1014	1217	516	1381	475

Datasets	$\mathbb{S}_{14}l$		$\mathbb{S}_{14}r$		$S_{15}r$		\$16r	
	Train	Test	Train	Test	Train	Test	Train	Test
#sentences	1158	343	1627	500	754	325	1079	329
#pairs	1634	482	2643	865	1076	436	1512	457

SemEval Datasets : The current state of the arts **semantic analysis and annotated datasets**

Datasets:SemEval14~16

The pizza is delicious.

Aspect Term	pizza
Aspect Category	food
Sentiment Polarity	POS

SemEval Datasets : The current state of the arts semantic analysis and annotated datasets

Base-Line(Method reduce)

Methods	$\mathbb{S}_{14}l$	$\mathbb{S}_{14}r$	$S_{15}r$	$S_{16}r$
ODAO	76.14	80.73	80.72	79.24
-Pair Extraction Modules	50.13	57.53	60.86	60.71
-Self Training	62.06	72.19	72.13	71.0

Base-Line(Human Effort)

Method	Human Effort	$\mathbb{S}_{14}l$	$S_{14}r$	$S_{15}r$	$S_{16}r$
RINANTE		80.16	86.45	69.90	-
QDSL	Gold Annotation	84.27	87.85	77.72	83.34
PSTD		86.91	88.75	75.82	82.56
DeepWMaxSat		81.33	85.33	-	73.67
FS-ODAO		85.93	88.77	83.39	86.15
ABAE	None	32.9		40.2	
ABAE LCC+GBC	None	32.9 36.1		40.2 41.2	
ABAE LCC+GBC GMTCMLA	None Sample Annotation	32.9 36.1 56.08	76.51	40.2 41.2 61.75	-
ABAE LCC+GBC GMTCMLA AutoNER	None Sample Annotation Dictionary	32.9 36.1 56.08 65.44	76.51	40.2 41.2 61.75 -	-
ABAE LCC+GBC GMTCMLA AutoNER DP	None Sample Annotation Dictionary Rule Design	32.9 36.1 56.08 65.44 19.19	76.51 - 38.72	40.2 41.2 61.75 - 27.32	- - -

FS-ODAO, the fully supervised version of ODAO, achieves state-of-the-art performance

Human Effort

- Gold Annotation(Supervised) Gold standard annotated corpora
- None (Unsupervised)
- Sample Annotation (few-shot)
- Dictionary
- Rule Design

- Remove the early stop and self-training steps.
- FS-ODAO is trained in the same setting with other supervised baseline methods

ABAE(Unsupervised)

Sample Annotation

Method	Human Effort	$\mathbb{S}_{14}l$	$S_{14}r$	$S_{15}r$	$S_{16}r$
RINANTE		80.16	86.45	69.90	-
QDSL	Gold Annotation	84.27	87.85	77.72	83.34
PSTD		86.91	88.75	75.82	82.56
DeepWMaxSat		81.33	85.33	-	73.67
FS-ODAO		85.93	88.77	83.39	86.15
ABAE	None	32.9		40.2	
LCC+GBC	None	36.1		41.2	
GMTCMLA	Sample Annotation	56.08	76.51	61.75	-
AutoNER	Dictionary	65.44	-	-	-
DP	Pula Dasim	19.19	38.72	27.32	-
ODAO	Kule Design	76.14	80.73	80.72	79.24

Dictionary

Method	Human Effort	$\mathbb{S}_{14}l$	$S_{14}r$	$S_{15}r$	$S_{16}r$
RINANTE		80.16	86.45	69.90	-
QDSL	Gold Annotation	84.27	87.85	77.72	83.34
PSTD		86.91	88.75	75.82	82.56
DeepWMaxSat		81.33	85.33	-	73.67
FS-ODAO		85.93	88.77	83.39	86.15
ABAE	None	32.9	40.2		
LCC+GBC	None	36.1		41.2	
GMTCMLA	Sample Annotation	56.08	76.51	61.75	-
AutoNER	Dictionary	65.44	-	-	-
DP	Bula Dasim	19.19	38.72	27.32	-
ODAO	Kule Design	76.14	80.73	80.72	79.24

AutoNer(Dictionary)

Rule Design

Method	Human Effort	$\mathbb{S}_{14}l$	$S_{14}r$	$S_{15}r$	$\mathbb{S}_{16}r$
RINANTE		80.16	86.45	69.90	-
QDSL	Gold Annotation	84.27	87.85	77.72	83.34
PSTD		86.91	88.75	75.82	82.56
DeepWMaxSat		81.33	85.33	-	73.67
FS-ODAO		85.93	88.77	83.39	86.15
ABAE	None	32.9	40.2		
LCC+GBC	None	36.1		41.2	
GMTCMLA	Sample Annotation	56.08	76.51	61.75	-
AutoNER	Dictionary	65.44	-	-	-
DP	Parla Dasima	19.19	38.72	27.32	-
ODAO	Kule Design	76.14	80.73	80.72	79.24

Outline

Conclusion

- Aspect-opinion co-extraction and pair extraction tasks show that ODAO can achieve competitive or even better performance.
- ODAO can handle the noise and bias of the weak supervision.
- The double-layer design's effectiveness.