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Introduction(Task)

e Understanding customer requirements is crucial for business

* Review analysis to enhance their services

e Aspect: The product or service attribute

* Opinion: The reviewer’s opinion towards the corresponding product
or aspects(service) of a product

* Span : Each word we call span

* Open-domain task: lack training data, simultaneously mines find
correspondence join in the model (can help it cross domain )



Introduction(Input)

Aspect term extraction(ATE)
» A = {ALAE: -*aAI'} “wine list”

Opinion term extraction(OTE)
R = {Wlu W, ..., Wk} » (O — {Ola 02} s O} } “extensive” and “impressive”

the wine list is extensive and impressive Aspect-Opinion pair extraction(AOPE)

» P —_— {(A O ) } (“wine list”,“extensive”)
. - SRl VR (“wine list”,“impressive”)



Introduction (Method)

e Supervised extraction methods of the review require large-scale
human-annotated label data.

* Weak label: generates training data without human annotations by
rules-based on universal dependency parsing

* Doubled layer

 Early stopping to avoid the model over-fitting to the noise to tackle
the noisy weak supervision

* Self-train: Semi-supervised enrich label
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Method

Open-Domain
ATE-OTE
AOPE

Loss

Early Stop

Self-training
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Weak-label(open domain)

e Use the Parser tree.
* With out Human annotation train data
* This rule states that noun word ( ) is aspect term and adjective word (/ /) is an opinion term

* The rule can only label small portion of data(25.68% of data) but high precision of it
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the wine list is extensive and impressive .
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parser tree

root

adjective word is the root of this review @

nsubj conj

12



Model Description

* Encoder: Provide rich semantic, syntactic, and context-sensitive
information for each token in the input review.(We use bert base
encoder for our model)

* Framework: Build four independent encoders to tackle the tasks of
AT E, OT E, OSAE, and ASOE



Encoder output

If the probability we label it 1
[ .
. 1, if his > 0;
Y = 1
Each 0 else.
wgrt\:l r
N o 1, it h; > 0;
Sum Activation Output yi — e
Function k 0, e ls e.
yi=hi =W +b
Inputs l 1 ) hls — yl [0] ,
— hi =[],
H — {h[CLS]: hl: h2=u-, h[SEP]} le yl[ ]

The prediction from the start span and end span
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ATE-OTE
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Aspect-Opinion Pair Extraction

* Get the Pair Extraction from the Opinion &Aspect

i Aspect Specified Opinion Span Extractor
0%):;11:1)11 OTE — _ (ASOF)
—|  AQPE
-~y
Aspect ATE (pinon Speified Aspet Spam Etracor

Term | (OSAE)



Aspect-Opinion Pair Extraction
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Loss function

N’ Splsp
Lacor = Lisor T Lusor  Lizt spefse} BCE[; Y,
ASOE = 2 = / .
4
N . (4)
™ 21- (5, * log(y") + (1-5“;:"}) * |og( 1—y§Pr)

* The loss function is also the averaged binary cross-entropy loss (BCE)
between the predicted spans and labeled spans.
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Loss function

L =Late+ Lot + Lasoe + LosAE.

e Sum of loss from ATE, OTE, ASOE, and OSAE modules

(5)
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Canonical correlation analysis:

The hidden representations of the reviews to measure this correlation
and use CCA as early stopping criteria during training
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Formula

42@ —x)(y %)
Cov(x.y)

ut 2. A0

Cross Covariance Matrix

V@t Zaa w)@T Too v)
/ Covariance Matrix '\

Sy (o=
var(x) = = var(y) = = —

Correlation COrr
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Canonical correlation analysis

('ross Covariance Matrix
Ca,0, Cuo0,

Calculate Eigenvalue Find out max correlation

- u' 0
[ ] Ri=u = LAO

H po—v =W W Iy 200

Canonical Correlation
1 . 1
ff_q — C_q_q C_qDlC 0A GDL]

(u,v)=argmaz m-rr{uTH_i. L‘IHG}
Canonical Correlation
Co = CppCoaC10C 11
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Early Stopping:
(u’,0") = argmax corr(uTHyg, v THosAE),

u,u
= corr(uTHyrp,0TH
p1 =10 ( ATE OSAE) Early stopping can prevent the model from

uT Y400 over-fitting to the label noise.
\/(HT 2aA WOT 2oo v)

- 2oamp1 + p2)
’

the number of reviews

P1
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Early Stoppingp1l
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_ Weak Label Generator
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Early Stoppingp?2
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Early Stopping
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(a) CCA score and ATE F1 score

Use the following observations to solve this problem
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Self-Training

/ / / /
IR JA4ral sz + Vprpl0

ASOF?
4

AAB = (A - B)|J(B - A)

e Correctly predicted reviews
 Isaddedin D' labeled to enrich the

training data
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Datasets:SemEval14~16

Datasets Sq14l S147 Sq1sr S1el
Train | Test | Train | Test Train | Test | Train | Test

#sentences 3045 B00 3041 500 1315 685 2000 676

#aspects 2359 653 3693 1134 1205 542 1757 622

#opinions 2500 677 3512 1014 1217 516 1381 475
Datasets S;HE 514}"' 515}"' 515}"

Train | Test | Train | Test | Train | Test | Train | Test

#sentences | 1158 343 1627 500 754 325 1079 329
#pairs 1634 482 2643 865 1076 436 1512 457

SemEval Datasets : The current state of the arts semantic analysis and annotated datasets



Datasets:SemEval14~16

The pizza is delicious. ‘

SemEval Datasets : The current state of the arts semantic analysis and annotated datasets

Aspect lerm pizza
Aspect Category food
Sentiment Polarity POS
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Base-Line(Method reduce)

Methods S14l S147 S157 S167
ODAO 76.14 | 80.73 | 80.72 | 79.24
-Pair Extraction Modules | 50.13 | 57.53 | 60.86 | 60.71
-Self Training 62.06 | 72.19 | 72.13 | 71.0
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Base-Line(Human Effort)

Method Human Effort Sqal Sq1ar S1sr S1el
RINANTE 8016 86.45 69.90 -
OQDSL 85427 87.85 77.72 83.34
P5TD Gold Annotation 86.91 88.75 75.82 8256
DeepW Max5at 851.33 85.33 - 73.67
FS-0DAO 85.93 II 88.77 83.39 86.15
ABAE None 32.9 40.2
LCC+GBC 36.1 41.2
GMTCMLA Sample Annotation 56.08 76.51 61.75 -
AutoNER Dictionary 65.44 - - -
DP Rule Design 19.19 38.72 27.32 -
ODAO 76.14 [ 80.73 | 80.72 | 79.24

FS-ODAO, the fully supervised version of ODAO, achieves state-of-the-art performance
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Human Effort

* Gold Annotation(Supervised) Gold standard annotated corpora
* None (Unsupervised)

e Sample Annotation (few-shot)

* Dictionary

e Rule Design



FS-ODAO

 Remove the early stop and self-training steps.

* FS-ODAO is trained in the same setting with other supervised baseline
methods



ABAE(Unsupervised)
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Sample Annotation

Method Human Effort Sqal Sq1ar S1sr S1el
RINANTE 80.16 856.45 69.90 -
OQDSL 84.27 87.85 T7.72 83.34
PSTD Gold Annotation 86.91 88.75 75.82 82.56
DeepW Max5at 81.33 85.33 - 73.67
FS-0DAO 85.93 88.77 83.39 86.15
ABAE None 32.9 40.2
LCC+GBC 36.1 41.2
GMTCMILA Sample Annotation 56.08 76.51 61.75 -
AutoNER Dictionary 65.44 - - -
DP Rule Design 19.19 38.72 27.32 -
ODAO 76.14 80.73 80.72 79.24
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Dictionary

Method Human Effort Sqal S14r S5 S1el
RINANTE 80.16 86.45 69.90 -
QDSL 8427 87.85 T7.72 83.34
PSTD Gold Annotation 86.91 88.75 75.82 82.56
DeepW Max5at 81.33 85.33 - 73.67
FS5-0ODAO 85.93 88.77 83.39 86.15
ABAE None 32.9 40.2
LCC+GBC 36.1 41.2
GMTCMLA I Samgle Annotation | 56.08 76.51 61.75 -
AuntoNER Dictionary 65.44 - - -
DP Rule Design 19.19 38.72 27.32 -
ODAO 76.14 80.73 80.72 79.24
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AutoNer(Dictionary)

Entity Type: None

Entity Type: AspectTerm
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Rule Design

Method Human Effort Sqal Sq1ar S1st S1el
RINANTE 80.16 856.45 69.90 -
OQDSL 84.27 87.85 T7.72 83.34
PSTD Gold Annotation 86.91 88.75 75.82 82.56
DeepW Max5at 81.33 85.33 - 73.67
FS-0DAO 85.93 88.77 83.39 86.15
ABAE None 32.9 40.2
LCC+GBC 36.1 41.2
GMTCMILA Sample Annotation 56.08 76.51 61.75 -
AutoNER Dictionary 65.44 - - -
DP Rule Design 19.19 38.72 27.32 -
ODAO 76.14 80.73 80.72 79.24

49



Outline

Conclusion



Conclusion

* Aspect-opinion co-extraction and pair extraction tasks show that
ODAO can achieve competitive or even better performance.

* ODAO can handle the noise and bias of the weak supervision.

 The double-layer design’s effectiveness.



